Translational Approaches to
Thromoinflammation:
Addressing Threat X With Big Science:

Mitchell Jay Cohen, MD, FACS
Professor and Vice Chair of Surgery @T

University of Colorado School of Medicine

University of Colorado
Anschutz Medical Campus



THREAT X:

COMMON BIOLOGY UNDERLYING AGNOSTIC THREAT

Threat X research needs to examine the common biology and
solutions that drive critical iliness and injury.
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Intrinsic pathway

Vascular surface changes

Extrinsic pathway

Tissue
l thiomboplastin
Xl ——= Xlla Vil ks
L
¥W|— Xla
|, ———= |3
.'
Wl
Common pathway ‘
x-
Prothrombin (H) l
l-l Xxa+ v
Thrombin Xllia -

Fibrinogen (I} ——— Fibrin monomer —— Fibrin polymer ———= Stable fibrin
Chod fonrmation

‘

2|1



a AN
K.

[ Ear=]=

- F!'-::b-c?::ar:y-ftll_n_. oy
- T
€ - -

‘EARLE - / -

- il
=1 - E-zelechn

- LPS
Haselestn

CSa

Bradykinin
"

Prekallikrein

= .~
.‘. o
o

Annaxin
-
GO ar
w

R
B L BARSE

POGF

s 4 :#__.--"‘:-,_
e 1

o i, =
T

"'- : I'f-'am-'-::-r:-:'w ehtﬁ:,?*bﬁ
""'*Jt:“"ﬂ“'ib‘”# e T _H-F = Entagtin L\ -

i Thlmﬂ:-:aa;}:-nnin

. e P2
- & pPaE

B '“Di.""m’ _
. - i & BAMPLT

By e RAMPE
= = - » .' InE‘g’qu aMf!-CE " .",l‘fl\.":l:":-.E

BME-T ”f_ j  MREP-11

P'ﬂ-:'l_'—i""’ o st - =0 - ]

@) Fitrinogan

s : e
” Heparin codactal =" | .‘ wironectin
= : - - PR
PAL-1 B = Floranectin

- F T W Eeaalin [ )
. Ingerin abitgs L - .

e | *L.p:nprc:‘.e:n &
A INtegrin axpa;

Feyey v

LS| ! -
& IL-Sr Gz 2 o " ! = s
MEsin PR-1 o T = o
PAR-4 o
- Collapen

Larminin




Threat X

* Agnostic multiple threats.

 Acommon

immunothromboinflammatoendotheliopathy
response?

e A individualized

immunothromboinflammatoendotheliopathy
response?



We have pretty good clinical insight of
how and why Threat X patients die.

Anatomic injury

Coagulopathy

Endotheliopathy

Perturbed inflammation/immune response
Infection

Clinical experience of similar patients and underlying data
should not be discounted.



Models of Threat X

There are no current relevant models of threat X.
There are good trauma models but...

There are good radiation models but...

There are good chemical exposure models but...

All of these models suffer from limitations, inadequate development and the
lack of combined injury models.

However this can be fixed and we are starting.



Clinical models

Get as much data as possible (trans omics).
Trauma is pretty good.

Radiation is fortunately sparse but not unheard of and there is
much we can bidirectionally extrapolate.

Chem is fortunately sparse but not unheard of

Threat X will likely be coming and we need to be ready to collect
that data (and treat).



Clinical Insight

Requires a common data structure and ontology.

Fortunately limited data in radiation but some.

Lots of trauma data which is less integrated and difficult to fund.
Some chemical data.

Pandemic and infectious and other inflammatory data is pervasive but
not standardized.

There is a place for synthetic data.




So how can we address this?

We have to better understand the phenotypes of injury across clinical, in
vitro, in vivo and in silico models.

In the era of big data and personalized medicine experimentation is key
including broad diverse data and synthetic data..

This can then be supervised by clinicians and experts to drive inference.



Coagulopathy and Inflammation after
Trauma:
(and Burn, Chem, Radiation,
Infection...)
are linked by Protein C
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aPC Activation and Function
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Maladaptive response to trauma. Early coagulopathy,
later hypercoagulable state and loss of cytoprotectivity.

Early post-traumatic phase
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aPC Increases After Trauma and Correlates
with TIC
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FIGURE 2. Tissue injury and shock result in a systemic activation of protein C pathway associated with coagulopathy in trauma
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Animal Model: Traumatic Coagulopathy

« Tissue Injury

* Hemorrhagic shock:
— Non-ventilated, fixed-pressure.

— Blood withdrawn via vascular line.
— MAP 35 +/- 5mmHg x 60 min.
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Acute Traumatic Coagulopathy: mediated by

aPC anticoagulantfunction

40 T

PTT (sec)

30 T

20 T

10 T

Control

mAb 1591

oKX
PC\

anticoagulant

cytoprotective

Trauma/ Traumal
Hem. Hem.
(no Ab) (mAb 1591)




aPC is required for survival of Trauma/Hemorrhage
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COMPLETE inhibition of Protein C causes diffuse
intravascular coagulation & pulmonary injury.
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Abstract

Introduction

Acute traumatic coagulopathy has been associated with shock and tissue injury, and may
be mediated via activation of the protein C pathway. Patients with acute traumatic coagulo-
pathy have prolonged PT and PTT, and decreased activity of factors V and VIII; they are
also hypocoagulable by thromboelastometry (ROTEM) and other viscoelastic assays. To
test the etiology of this phenomenon, we hypothesized that such coagulopathy could be
induced in vitro in healthy human blood with the addition of activated protein C (aPC).

Methods

Whole blood was collected from 20 healthy human subjects, and was “spiked” with increas-
ing concentrations of purified human aPC (control, 75, 300, 2000 ng/mL). PT/PTT, factor
activity assays, and ROTEM were performed on each sample. Mixed effect regression
modeling was performed to assess the association of aPC concentration with PT/PTT, fac-
tor activity, and ROTEM parameters.

Results

In all subjects, increasing concentrations of aPC produced ROTEM tracings consistent with
traumatic coagulopathy. ROTEM EXTEM parameters differed significantly by aPC concen-
tration, with stepwise prolongation of clotting time (CT) and clot formation time (CFT),
decreased alpha angle (a), impaired early clot formation (a10 and a20), and reduced maxi-
mum clot firmness (MCF). PT and PTT were significantly prolonged at higher aPC concen-
trations, with corresponding significant decreases in factor V and VIII activity.

Conclusion

A phenotype of acute traumatic coagulopathy can be induced in healthy blood by the in vitro
addition of aPC alone, as evidenced by viscoelastic measures and confirmed by

PLOS ONE | DOI:10.1371/journal.pone.0150930 March 23, 2016
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Activation of Protein C mechanistically dries
TIC

* Elevated aPC is associated with TIC shortly after ED arrival
* Later depletion of PC is associated with infection and organ failure

* In mice, coagulopathy in T/HS mice was blocked with Ab blocking the
anticoagulant activity of aPC

 Blocking global aPC function was 100% fatal, indicating that the
cytoprotective function of aPC is essential to survival of initial T/HS

Cohen MJ, Call M, Nelson M, et al. Critical role of activated protein C in early coagulopathy and later
organ failure, infection and death intrauma patients. Ann Surg. 2012;255(2):379-385.

Chesebro BB, Rahn P, Carles M, Esmon CT, Xu J, Brohi K, Frith D, Pittet JE Cohen MJ. Increase in activated protein C
mediates acute traumatic coagulopathy in mice. Shock. 2009 Dec;32(6):659-65.



Early activation and later depletion of PC results
in early TIC and later inflammatory complications

and is associated with a unique proteomic
signature



Maladaptive response to trauma. Early coagulopathy, later
hypercoagulable state and loss of cytoprotectivity.

Early post-traumatic phase
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The PAR1 Paradox: aPC beneficial signaling

e aPC and Thrombin signal through PAR1

PAR1 cleavage at Arg41 PAR1 cleavage at Arg46 with different downstream effectors
TRAP Thrombin APC TR47

| ‘ I ‘ and opposing effects
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Bouwens EA, Stavenuiter F, Mosnier LO. Mechanisms of anticoagulant and cytoprotective actions of the protein C pathway. J Thromb Haemost. 2013;11
Suppl 1(0 1):242-253.



Proteomics of
aPC
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Proteomics

Protein C Depletion associated with:

nitric oxide metabolismand
endothelial dysfunction
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aPC mutants

* 4-20% of anticoagulant activity
* Preserved cytoprotective activity

e 3K3A-APCin phase 2 stroke trials

Mosnier LO, Gale AJ, Yegneswaran S, Griffin JH. Activated protein C variants with normal
cytoprotective but reduced anticoagulant activity. Blood. 2004 Sep 15;104(6):1740-4. doi:
10.1182/blood-2004-01-0110. Epub 2004 Jun 3. PMID: 15178575.
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Protection of ischemic white matter and
oligodendrocytes in mice by 3K3A-activated
protein C

Mikko T. Huuskonen?*@®, Yaoming Wang"?*®, Angeliki Maria Nikolakopoulou"?*@®, Axel Montagne"?*®, Zhonghua Dai*?@®, Divna Lazic’®,
Abhay P. Sagare?@®, Zhen Zhao"?@®, Jose A. Fernandez>®, John H. Griffin3*@®, and Berislav V. Zlokovic’@®

Subcortical white matter (WM) stroke accounts for 25% of all strokes and is the second leading cause of dementia. Despite
such clinical importance, we still do not have an effective treatment for ischemic WM stroke, and the mechanisms of WM
postischemic neuroprotection remain elusive. 3K3A-activated protein C (APC) is a signaling-selective analogue of endogenous
blood protease APC that is currently in development as a neuroprotectant for ischemic stroke patients. Here, we show that
3K3A-APC protects WM tracts and oligodendrocytes from ischemic injury in the corpus callosum in middle-aged mice by
activating protease-activated receptor 1 (PAR1) and PAR3. We show that PAR1 and PAR3 were also required for 3K3A-APC’s
suppression of post-WM stroke microglia and astrocyte responses and overall improvement in neuropathologic and
functional outcomes. Our data provide new insights into the neuroprotective APC pathway in the WM and illustrate 3K3A-APC’s
potential for treating WM stroke in humans, possibly including multiple WM strokes that result in vascular dementia.

J. Exp. Med. 2021 Vol. 219 No. 1 20211372
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NONTRADITIONAL ROLES FOR THE HEMOSTATIC SYSTEM IN THE VESSEL WALL

Activated protein C, protease activated receptor 1,

and neuroprotection

John H. Griffin,2 Berislav V. Zlokovic,® and Laurent O. Mosnier’

The Scripps Research Institute, La Jolla, CA; ?2Department of Medicine, University of California, San Diego, CA; and *Zilkha Neurogenetic Institute, University of

Southern California, Keck School of Medicine, Los Angeles, CA

Protein Cis aplasma serine protease zymogen whose active
form, activated protein C (APC), exerts potent anticoagu-
lant activity. In addition to its antithrombotic role as a
plasma protease, pharmacologic APC is a pleiotropic pro-
tease that activates diverse homeostatic cell signaling
pathways via multiple receptors on many cells. Engineering
of APC by site-directed mutagenesis provided a signaling
selective APC mutant with 3 Lys residues replaced by
3 Alaresidues, 3K3A-APC, that lacks >90% anticoagulant
activity but retains normal cell signaling activities. This
3K3A-APC mutant exerts multiple potent neuroprotective
activities, which require the G-protein—coupled receptor,
protease activated receptor 1. Potent neuroprotection in
murine ischemic stroke models is linked to 3K3A-APC-
induced signaling that arises due to APC's cleavage in
protease activated receptor 1 at a noncanonical Arg46 site.

This cleavage causes biased signaling that provides a
major explanation for APC’s in vivo mechanism of action
for neuroprotective activities. 3K3A-APC appeared to
be safe in ischemic stroke patientsand reduced bleeding
inthe brain after tissue plasminogen activator therapy in
a recent phase 2 clinical trial. Hence, it merits further
clinical testing for its efficacy in ischemic stroke patients.
Recent studies using human fetal neural stem and pro-
genitor cells show that 3K3A-APC promotes neuro-
genesis in vitro as well as in vivo in the murine middle
cerebral artery occlusion stroke model. These recent
advances should encourage translational research cen-
tered on signaling selective APC’s for both single-agent
therapies and multiagent combination therapies for
ischemic stroke and other neuropathologies. (Blood.
2018;132(2):159-169)

'.) Check for up
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Activated protein C analog promotes neurogenesis and
improves neurological outcome after focal ischemic stroke
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Protease activated receptor 1

3K3A-APC is a recombinant analog of activated protein C (APC) which is an endogenous
protease with multiple functions in the body. Compared to APC, 3K3A-APC has reduced
anticoagulant activity but preserved cell signaling activities. In the brain, 3K3A-APC exerts
neuroprotective effects after an acute or chronic injury. 3K3A-APC is currently under
clinical assessment as a neuroprotective agent following acute ischemic stroke. Whether
3K3A-APC can influence post-ischemic neurogenesis and improve neurological outcome by
promoting brain repair remains unknown. Here we show that murine 3K3A-APC 0.8 mg/kg
intraperitoneally given at 12 h, 1, 3, 5 and 7 days after permanent distal middle cerebral
artery occlusion (dMCAO) in mice compared to vehicle improves significantly sensorimotor
and locomotor activity 7 and 14 days after stroke, reduces infarct and edema volumes 7
days after stroke by 43% (P<0.05) and 50% (P<0.05), respectively, increases the number of
newly formed neuroblasts in the subventricular zone, corpus callosum and the peri-infarct
area 7 days after stroke by 2.2-fold, 2.3-fold and 2.2-fold (P<0.05), respectively, and
increases the cortical width index 14 days after stroke by 28% (P<0.05). Functional
outcome in 3K3A-APC-treated group, but not in vehicle-treated group, correlated inversely
with the reductions in the infarct volume, and positively with the number of neuroblasts
migrating in the peri-infarct area and the cortical width index. The effects of 3K3A-APC on
neuroprotection, neurogenesis and brain repair were lost in protease activated receptor 1
(PAR1) deficient mice. Thus, late therapy with 3K3A-APC is neuroprotective and promotes
stroke-induced neurogenesis and repair through PAR1 in mice.

© 2013 Elsevier B.V. All rights reserved.
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Protection of ischemic white matter and
oligodendrocytes in mice by 3K3A-activated
protein C

Mikko T. Huuskonen* @, Yaoming Wang2*®, Angeliki Maria Nikolakopoulou2* @, Avel Montagne*?*®, Znonghuz Dai*®, Divna Lazic'@,
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Subcortical white matter (WM) stroke accounts for 25% of all strokes and is the second leading cause of dementia. Despite
such clinical importance, we still do not have an effective treatment for ischemic WM stroke, and the mechanisms of WM
postischemic neuroprotection remain elusive, 3K3A-activated protein C (APC) i a signaling-selective analogue of endogenous
blood protease APC that is currently in development as a neuroprotectant for ischemic stroke patients. Here, we show that
3K3A-APC protects WM tracts and oligodendrocytes from ischemic injury in the corpus callosum in middle-aged mice by
activating protease-activated receptor 1 (PARI) and PAR3. We show that PARL and PAR3 were also required for 3K3A-APC's
suppression of post-WM stroke microglia and astrocyte responses and overall improvement in neuropathologic and
functional outcomes. Our data provide new insights into the neuroprotective APC pathway in the WM and llustrate 3K3A-APC's
potential for treating WM stroke in humans, possibly including multiple WM strokes that result in vascular dementia.



aPC reduces brain damage following TBI

* In mouse controlled cortical impact, 3K3A-APC was neuroprotective

e Decreased lesion volume, increased new blood vessel formation, and
promoted neuroblast proliferation

* Improved motor function early, however control mice returned to
baseline by day 6

Minhas N, Xue M, Fukudome K, Jackson CJ. Activated protein C utilizes the angiopoietin/Tie2 axis
to promote endothelial barrier function. FASEB J. 2010 Mar;24(3):873-81. doi: 10.1096/fj.09-
134445, Epub 2009 Oct 26. PMID: 19858095.
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Early Coagulopathy After Traumatic Brain Injury: The Role of

Hypoperfusion and the Protein C Pathway

Mirchell Jay Colten, MD, Karim Broki, FRCS, FRCA, Michael T. Ganter, MDD, Geoffrey T. Manley, MD, PRD,
Rabent C. Mackersie, MD, and fean-Franpois Pifter, MD
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Astrocytes and pericytes attenuate severely
injured patient plasma mediated expression
of tight junction proteins in endothelial cells
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Abstract

Blood Brain Barrier (BBB) breakdown is a secondary form of brain injury which has yet to be
fully elucidated mechanistically. Existing research suggests that breakdown of tight junction
proteins between endothelial cells is a primary driver of increased BBB permeability follow-
ing injury, and intercellular signaling between primary cells of the neurovascular unit: endo-
thelial cells, astrocytes, and pericytes; contribute to tight junction restoration. To expound
upon this body of research, we analyzed the effects of severely injured patient plasma on
each of the cell types in monoculture and together in a triculture model for the transcriptional
and translational expression of the tight junction proteins Claudins 3 and 5, (CLDNS,
CLDNS5) and Zona Occludens 1 (ZO-1). Conditioned media transfer studies were performed
to illuminate the cell type responsible for differential tight junction expression. Our data show
that incubation with 5% human ex vivo severely injured patient plasma is sufficient to pro-
duce a differential response in endothelial cell tight junction mMRNA and protein expression.
Endothelial cells in monoculture produced a significant increase of CLDN3 and CLDN5
mRNA expression, (3.98 and 3.51 fold increase vs. control respectively, p<0.01) and
CLDNS5 protein expression, (2.58 fold change vs. control, p<0.01), whereas in triculture, this
increase was attenuated. Our triculture model and conditioned media experiments suggest
that conditioned media from astrocytes and pericytes and a triculture of astrocytes, pericytes
and endothelial cells are sufficient in attenuating the transcriptional increases of tight junc-
tion proteins CLDN3 and CLDN5 observed in endothelial monocultures following incubation
with severely injured trauma plasma. This data suggests that inhibitory molecular signals
from astrocytes and pericytes contributes to prolonged BBB breakdown following injury via
tight junction transcriptional and translational downregulation of CLDN5.

Blood brain barrier model of cocultured
Brain Endothelial cells, Pericytes and
Astrocytes.

Ex vivo trauma plasma (both TBI and non TBI
results in BBB breakdown and barrier function

Mediated by crosstalk between astrocytes and
pericytes with endothelial cells on junctional
proteins.

Now inhibited by aPC.



COVID: Infection, Sepsis and the next Pandemic



APC and sepsis

e Recombinant aPC

* Initially showed 6% decrease in
mortality in severe sepsis in
PROWESS trial

* 1.5% increase in severe
bleeding

* Dosed as low-dose 96h infusion

Efficacy and Safety of Recombinant Human activated protein c for
severe sepsis. Bernard, Vincent, Laterre et. Al. Mar 2001. N EnglJ
Med 2001; 344:699-709
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aPC cleaves extracellular histones
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Figure 2 APC cleaves histones both in vitro and in vivo. (a) Cell damage,

as measured by flow cytometry for Pl staining and expressed as mean e 1‘;”;’13‘3 AR f e Ik
fluorescence index (MFI), in EA.Ry926 cells cultured with calf thymus histones -
in the indicated concentrations in the absence or presence of APC (10 or 100 nM)
at 37 °C for 1 h. (b,c) Cytotoxicity assay (b) or western blot analysis for H3 or H4 184 kDa- E. coli plus APC
at the times indicated (c) in EA.hy926 cells for 1 h with calf thymus histones 137 kDa

(60 pg mi-!) incubated with APC (100 nM) at 37 °C for the indicated time and

then mixed with PPACK (10 uM) to inactivate APC. (d) Cell damage, as measurad by flow cytometry for Pl staining, in EA.hy926 cells cultured

with calf thymus histones (50 pg mi-1) in the absence or presence of protein C (100 nM), thrembin (T) (10 nM) or APC (100 nM) at 37 °C for 30 min.
{e) Western blot analysis for H3 of baboon plasma samples at the times indicated after E. coli or E. coli plus APC challenge. (f) Western blot analysis
for H3 of plasma samples taken at the times indicated from the start of APC treatment of a human with sapsis. The flow cytometry results are
representative of three or more similar experiments, and western blot results are representative of two or more similar experiments.

13.7 kKDa

XuJ, ZhangX, Pelayo R, et al. Extracellular histones are major mediators of death in
sepsis. Nat Med. 2009;15(11):1318-1321. doi:10.1038/nm.2053



aPC protects against pseudomanas PNA lung leak
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Essentials

Abstract

Seriously ill patients with coronavirus disease 2019 (COVID-19) at risk for death ex-
hibit elevated cytokine and chemokine levels and D-dimer, and they often have co-
morbidities related to vascular dysfunctions. In preclinical studies, activated protein
C (APC) provides negative feedback downregulation of excessive inflammation and
thrombin generation, attenuates damage caused by ischemia-reperfusion in many
organs including lungs, and reduces death caused by bacterial pneumonia. APC
exerts both anticoagulant activities and direct cell-signaling activities. Preclinical
studies show that its direct cell-signaling actions mediate anti-inflammatory and
anti-apoptotic actions, mortality reduction for pneumonia, and beneficial actions for
ischemia-reperfusion injury. The APC mutant 3K3A-APC, which was engineered to
have diminished anticoagulant activity while retaining cell-signaling actions, was safe
in phase 1 and phase 2 human trials. Because of its broad spectrum of homeostatic
effects in preclinical studies, we speculate that 3K3A-APC merits consideration for
clinical trial studies in appropriately chosen, seriously ill patients with COVID-19.

KEYWORDS
activated protein C, coronavirus, COVID-19, cytokine, D-dimer, SARS-CoV-2

o Seriously ill patients with coronavirus disease 2019 (COVID-19) exhibit viral pneumonia, cytokine storm, disseminated intravascular coagu-

lation, and comorbidities.

o There are no approved therapies for severely ill patients with COVID-19.

o Activated protein C (APC) reduces inflammation and apoptosis, and it stabilizes endothelial and epithelial barriers.

o The 3K3A-APC mutant merits evaluation for seriously ill, appropriately chosen patients with COVID-19.

Infection with the virus identified as severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) can lead to virus-induced pneu-
monia that is designated coronavirus disease 2019 (COVID-19)
by the World Health Organization, and this infection has reached
pandemic proportions. The virus is thought to invade a host by at-
tachment to a receptor for the virus spike protein, namely, human
angiotensin-converting enzyme 2, which is expressed on epithelial

cells throughout the body. However, almost nothing is known about
the pathobiology leading to severe illness and death for patients
with COVID-19. Peer-reviewed reports from China indicate that
seriously ill patients with COVID-19 at risk for death develop ex-
tensive elevations in plasma levels of cytokines and chemokines
(interleukin [IL]-2, IL-6, IL-7, IL-10, granulocyte colony-stimulating
factor, interferon-y-induced protein 10, monocyte chemoattractant

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2020 The Authors. Research and Practice in Thrombosis and Haemostasis published by Wiley Periodicals LLC on behalf of International Society on

Thrombosis and Haemostasis (ISTH)

506 wileyonlinelibrary.com/journal/rth2

Res Pract Thromb Haemost. 2020;4:506-509.
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Old drug, new Trick? The rationale for the treatment of COVID-19 with it
activated protein C

Steven B. Pestka
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ARTICLE INFO ABSTRACT

Keywords: As the COVID-19 pandemic continues, seek to identify Current approaches to
COVID-19 COVID-19 therapeutics focus on antiviral agents, convalescent plasma, ibodies, i

Activated protein C
COVID-19 therapeutics

lators and more traditional therapies such as steroids [1-6]. Reversing disturbances in coagulation has also been
identified as a priority area for candidate therapies, such as through the Accelerating COVID-19 Therapeutic

Interventions and Vaccines 4 adaptive clinical trial (ACTIV-4) which is currently evaluating aspirin, heparins and
i isms of ion and the immune response, it

apixaban [7]. Since there is a clear

ip between

is possible that reversing in
in COVID-19. The basis for this hypothesis is described below and is followed by discussion of a proposed
candidate therapy - activated protein C. By treating COVID-19 patients using a novel approach, which does not

focus on i

d or antiviral

may diminish the

immune response observed

but instead which addresses both the anti-thrombotic and in-

flammatory consequences of infection, the hope is that new therapeutic targets can be considered and new
candidate therapies, such as activated protein C, may be evaluated.
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Pharmacological targeting of the thrombomodulin—protein C
pathway mitigates radiation toxicity
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Low admission protein C levels are a risk factor for disease worsening and mortality in hospitalized

patients with COVID-19
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At present, the clinical course of coronavirus disease 2019 (COVID-
19) is unpredictable and can rapidly develop, causing severe and deadly
complications. Therefore, there is an urgent need to identify reliable
biomarkers related to COVID-19 disease progression and death for di-
agnostics as well as to identify pathways that are amenable to existing or
new therapeutics. While biomarkers of coagulation (e.g. D-dimer),
inflammation (e.g. interleukin-6 [IL-6] and C-reactive protein [CRP]),
cell damage (e.g. lactate dehydrogenase [LDH]) and immunity (e.g.
lymphocyte count) as well as clinical scoring systems (e.g. International
Society on Thrombosis and F [ISTH] di: i d i
cular coagulation [DIC] score) [1] can be helpful in predicting clinical
course and outcome in patients with COVID-19, there is a need for
additional biomarkers.

As COVID-19 progresses, inflammatory responses lead to a coagul-
opathy associated with a high incidence of thrombotic events, especially
in the microvasculature [2]. The pattern of changes in hemostatic var-
iables in COVID-19-associated coagulopathy appears to be different to
that in sepsis and DIC, and there are gaps in knowledge as to which
hemostatic proteins that may be most informative for the early identi-
fication of patients with poor prognosis in COVID-19 [2].

‘We aimed to characterize admission plasma levels of 12 hemostatic
proteins in hospitalized COVID-19 patients in order to identify proteins
associated with risk of disease worsening including death within 28
days. The data used here is from a publicly available longitudinal
COVID-19 cohort collected at the Massachusetts General Hospital
(MGH), Boston, USA (with institutional review board approval;
https://www.olink.com/mgh-covid-study/), which has recently been
described in detail [3].

This study is based on 231 COVID-19 patients presenting at the
emergency department with moderate or severe illness, i.e. requiring
oxygen (n = 152) or intensive care (n = 79). The World Health

Gheck for
| updates’

Organization (WHO) COVID-19 outcomes scale was used on day one and
again at 28-day follow-up to classify patients as mild (WHO 5-6),
moderate (WHO 4), severe (WHO 2-3) or dead (WHO 1). Of the 152
patients presenting with moderate COVID-19, 128 improved, 2
remained unchanged, 5 deteriorated and 17 died; of the 79 patients with
severe COVID-19, 23 improved, 34 remained unchanged, 0 deteriorated
and 22 died.

Plasma was isolated from blood collected in EDTA tubes on admis-
sion. Plasma protein levels were measured using proximity extension
assay (PEA) technology with the OLINK Explore 1536 panel (OLINK,
Uppsala, Sweden). In total 12 proteins belonging to the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) coagulation cascade were pre-
sent on the OLINK Explore panel and analyzed for association with 28-
day disease worsening in the present study.

Available clinical and admission laboratory measures previously
reported to associate with COVID-19 clinical course and/or outcomes
that were included as covariates in the multivariate analyses in the
present study were coded as binary variables as indicated in Table 1 (for
original definitions, see https://www.olink.com/mgh-covid-study/ and
[31). Given that IL-6 has been robustly associated with poor prognosis in
COVID-19 patients, IL-6 levels measured with the OLINK Explore panel
were also included as a covariate. Identifying variables such as sex and
ethnicity were unavailable. In line with previous studies, patients whose
condition deteriorated (including those who died) were more likely to
be older, have comorbidities, reduced lymphocyte count, and increased
creatinine, CRP, D-dimers, LDH and IL-6 than patients who improved
(Table 1).

Univariate ordinal logistic regression analyses for 28-day disease
worsening were performed for each of the 12 hemostatic proteins. Pa-
tients whose condition deteriorated had elevated admission plasma
levels of proteinase-activated receptor 1 (PAR1, p = 0.004), tissue factor

Abbreviations: APC, activated protein C; DIC, disseminated intravascular coagulation; CRP, C-reactive protein; FVII, coagulation factor VII; FIX, coagulation factor

IX; IL-6, interleukin-6;

tissue factor pathway inhibitor; t-PA, tissue-type plasminogen activator; TM, thr

DH, lactate dehydrogenase; PAI-1, plasminogen activator inhibitor type 1; PAR-1, proteinase-activated receptor 1; TF, tissue factor; TFPI,

plasminogen activator receptor; vWF, von Willebrand factor.

https://doi.org/10.1016/j.thromres.2021.05.016

u-PA, type activator; uPAR, urokinase-type

Received 27 January 2021; Received in revised form 6 May 2021; Accepted 25 May 2021

Available online 29 May 2021
0049-3848/© 2021 Published by Elsevier Ltd.



Protein C Endothelial Permeability and
Cytoprotection: Trauma and a Promise for Threat X



=)

aPC mutants "

= _— ‘:}'m""'\ : = ] W ERAR
g g N
* 8-20% of anticoagulant activity £ %
L —— ol I
* Preserved cytoprotective activity R
E :
AP !

e 3K3A-APCin phase 2 stroke trials .

SIE0ARPD |

01 5 0 15 20 %5
Cyloprmiecbe bo anticosguiant raiin

Mosnier LO, Gale AJ, Yegneswaran S, Griffin JH. Activated protein C variants with normal
cytoprotective but reduced anticoagulant activity. Blood. 2004 Sep 15;104(6):1740-4. doi:
10.1182/blood-2004-01-0110. Epub 2004 Jun 3. PMID: 15178575.



APC increases S1P production
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aPC signaling through Tie2 increases Z0-1
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APC decreases Ang?2
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* ECIS uses impedance to measure
permeability of cells

* Decreased resistance -> increased
permeability
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Ex Vivo Trauma Plasma Induces Endothelial
Permeability
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Fig. 1 Patient Plasma Induces Barrier Dysfunction.
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Ex vivo Trauma Permeability Phenotypes
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Calcium Signaling in Endothelial Permeability
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* RhoA Activation

* Mediates endothelial permeability
* Dependent on intracellular Ca?* flux

* C4 Activation after injury

e Associated with adverse outcomes
* C4a—> Mintracellular Ca?*—>permeability

* Post-injury hypocalcemia

* Influx from extracellular space?
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More intracellular calcium flux in ex vivo
severe injury.

2.0 -
Group 2

-

-
($)]
|

Mean F/Fo
>
]

|

Group 1

=
)]
I

0-0 lllllllllllllllllllllllllll

0 200 400
Time (seconds)

@ University of Colorado
Anschutz Medical Campus




Where does the Ca?* come from?

 Buffer without CaCl, + EGTA = No Extracellular Ca?*
* Group 2 patient samples (n=5)

@]l University of Colorado
Anschutz Medical Campus



Less intracellular Ca2* flux without extracellular Ca%*

37 With Extracellular Ca2*
L 27
™
c
o
E 1—"«-:-\IJ
No Extracellular Ca%*
0_-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|

0 200 400 600
Time (seconds)

@ University of Colorado
Anschutz Medical Campus

1500 - *
—
=
¢ 1000 -
)
- |
<
S 500-
(}]
—
0
b 4 X
cﬁ;b d;"
¥
N N
o 4
R R
<& <
& ¥

P<0.05
N=5




There is no difference in Ca%* flux when intracellular
stores are depleted with CPA
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Targeted clinical control of trauma patient coagulation
through a thrombin dynamics model
Amor A. Menezes,"? Ryan F. Vilardi,* Adam P. Arkin,"2** Mitchell J. Cohen®*

Wa present a mathodology for p g the climical af sevaraly injured patients with acute trawmatic
|ATC), an end biclagical resp of impaired v that ooours early after trauma and

shock and that is assodiated with increased bleeding, morbidity, and mortality, Despite biological characterization of
ATC, it is mot easily o rapidly diagnosed, not always captured by slow laboratory testing, and not socurately repre-
sented by coagulation models. This lack of knowledge, combined with the inherent time pressures of trauma treat-
ment, forces surgeons to treat ATC patients sccording to empirical resuscitation protocols. These entail transfusing
large walumes of poarly characterized, nontargeted blood praduscts that are not tailored to an individusl, the injury,
or coagulation dynamics. Massive transfusion morality remains at 20 to 70% in the best of trauma centers. As an
alternative to blunt treatmaents, time-consuming tests, and mechanistic madels, we used dynamical systems theory
to create a simple, biologically meaningful, and highly accurate model that () quickly forecasts a driver of
m coagulation, thrombin concentration after tissue factor stmulation, using rapldly measurable concen-

trations of blood proten factoss and (i the of additional lation factors needed 1o rectify
the predicted thrombin dynamics and potentially remedy ATC, We successiully demanstrate in vitro thromiin con-

2017 B The Authars,
Atarren righils e
anchisive Roarao:
Beoricen Amncion
e thi Advancement
of Scence.

tral consistent with the model. Campared to another model, we decreased the mean emars in twa key trauma pa-
i 5 pealk ani ion after tissue factor stimulation and the time until this peak ocours.

tient L:
Our methodology helps to advance individualized itati

INTRODUCTION
Trauma Is the leading cause of death and disability between the
ages af | and 24 (1), with bluud.ins cnmribu.!inﬂ to the vast majerity
of these deaths (2], Such hemprrbage B a clinical problem thar is
complicated by an endogenous biological response called acute traa-
matic coagualopathy (AT (3) ATC results in impaired cozgulation,
increased blesding, greater transfusion needs, and a fourfold increase
in meartadity (31 After the initial phase of hypecoagulobility, ATC pa
tierils often dynamically transition o a hypercoagubalile thrombatic state
munifested by evcessive clotting (3). The resulting deep vein thrombosis,
myccardial infarction, stroke, and organ fihure {4 all contribate 10 an
extremely poos cubcomse o patients whio survive thesr initlal injuries.
Diespite considerable research (41 on the molecular mechanisms
of ATC, there remains a mechanistic and predictive knowledge gag
that stems from an imadequate understanding of coagulation mecha-
nismms after an injury and a lack of adeguate prediction and real-time
decision suppart for cliniclans whio care for the severely mnjured. These
I:lilin!s impede imj 1o urgent itation. Thus, there &5 a
need 10 chmrcterize coagubition mechanisms i trumm patients ard o
use fhis characierizabion te improve the precision of individual treatments,
In the absence of dynamic diagnostics and decision support,
ourrent tranma resuscitaion practioes (4) center on the nontangeted
repair af the coagulation cascade {5) (Fig. 1A} and the production
of ity principal protein thrombin throagh the ransdusion of large val-

' Calornia Instiune for Quantitsve Bloscences ot Uriversty of Calfoenia, Brsieley,
I15] Buarkwhey 'Way, Barkidery, O SP04-5130, USA “Ervvironmesial Genomics and
Systirs Biologry Divisian a1 E ©0 Linwrenci Sarkisbey alioral Laberatery, 1 Cyeliatron
Good, Malviop 555511, Berkeley, C4 $4720, LSA, Drpartment of Labontory Med-
icine, Uinivarsiey of Calformia, San Franchcn, 506 Pamassas. Avenue, San Erandsoo, i
4143, LSA. ‘Demmmm of Bloengineering, Unkersity of Calfornia, Bedoedey, 151
Barkalkey Way, Borkoloy, CA9I704-5230, USA. Daparsent of Surgary, Dorwar Haalth
Masclical Cenbi, 777 Rannack Sirset, Denver, C0 B0JM-5306, USHA, "Departrent of
Suegery, University of Colonsdn, 12650 Est 1%t Avenue, C105, Aumes, (0 80045, 154
“Coamesponding msthor. Emal: sparkindiibl gov (AP A% mitchellcohersidhha.org
WLLED

Menezes of o, 50, Tranal Meo, 9, eapfS045 (2171 4 Jorwary 2007

af traumasinduced |k

deficits.

umes of poary charcterized Iresh-frozen plasma containing multiple
chotting protems and inhibitors in concentrations that vary from unk
o unit. These wrgent-care therapies indiscriminately actuate many in
teracting lermnents of the coagulation process, resulting in varmble un-
targeted treatment for every patient and with every sdministration,
which is further exacerbated by o lack of darity about trestment effects
on the patient's physiclopical and biological trapectories resulting from
the missing diagnostics and decision support. Such blunt treatment is
often either not enough (AT and bleeding continue) or oo much
(thrombiosis occurs). Both of these extremes contribate to dysregulated
inflammation and peor outcomes (4). The morality from massive
transfusion remains at 40 to 70% in the best of trawma centess (6],
Retraspective (7] and prospective (8) studies connect the blunt addition
of fresh-frozen plasa o poor outcomes, even when the plasma is
augrented with empirc ratics of platelets and red blood cells, Trans-
fasicn af fresh-frezen plasma is & thy assoaciated with 2 higher
risk of multiple ergan failuse and poor owtcomes in patsents with hem-
arvhagic shock (9. Meanwhile, individual mterventions consisting of
peranalized Bood protein factor concentrations that are tailored 1o
specific clotting perturbations have been shown to be beneficial (4], al-
thoagh o comsensus yet exists an the amount and type of coagulation
factors to adiminkster, There i, however, a clinkcal desire for specific
hlood products to treat trauma coagulopathy (1) In sum, in an era
of inereasing personalized medicing, tere & an urgent need for tar-
geted, parient-specific trauma coagulation therapies.

Current dizgnostics and decision support suffer from a dearth of
patient-spectfic coxgulation measurements, Although clinical practice
uses severnl global markers [international normalized ratie (MR}, par:
tial thrombaphstin time (FTT, prothreenbin time (FT), platelet count,
fibrinagen concentration, ete.] to dingnose the presence of AT, these
conventicmal cragulation lests are not encugh o Biar a specific inter:
verition and support only the decision to adnvinister plasma or not, Cel-
hased viscoelastic tests are insufficiently predictive, and their use in
ressuscitation algorithars also results in noatargeted treatrment. Maoneover,
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Solution: Personalized dynamic approach
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b
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Current Understanding: Coagulation Cascade

1/20/2023
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Claim: Possible to Simplify

Active/inactive
protein factor

Q Measured protein
factor

Complex of two
protein factors
—> Reaction

Reaction activation

\q Reaction inhibition

* Dynamical System Input:Tissue Factor
* Dynamical System Output: Thrombin

* Needan input-to-output measurement.

1/20/2023
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Thrombin Measurement

* The Calibrated Automated Thrombogram (CAT) is a fluorogenic assay that

measures thetime-history of thrombin generation in a blood sample upon the
addition of (typically 5pM of) tissue factor.

A TP A I Delayed
:)I o =i« T"hrombotic

2 T E f?l; ‘2\;/, mE Reference

i i !‘" 2 =

) =| #,2: -~ == Hemorrhagic

@ < y s~

= — $-

= e o

Time |min] " Time [min]
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Normal vs. Trauma CATs

0 10 20 30 40 0 10 20 30 40
Time [min] Time [min]

* Can we emulatetrajectories with a single-input single-
outputthrombin dynamical system model with a separable
delay for treatment guidance? What kind of model?

1/20/2023
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Building a Black-Box Model

x 10"

! ‘ | |e-Measured Datal * Can apprOXimate d
% 2r : | CAT peak-
= 04 'WW |

* Supposewe choose

“o 500 1000 _ 1500 2000 2500

- Time [ the following non-
4% ‘ .
=) = 0.066-9 tZ exp(0.01 1| delayed function as
32/\\\ | first approximation:
i L L - 2 -0[1’
G0 500 1000 1500 2000 2500 y ( t) ﬁ t e

ime [s]

 t2 2three states.

* Look at outputin frequency domain as the result of some
dynamical system:

Y(s)= 2P _ 2P

(S+0[)3 s*+3as’ +3a’s+a’
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Building a Black-Box Model: 3 states, 5 pars. O

* Supposeinputis a (unit) impulse, U(s) = 1:

Y(s) __ 28 _ 2p

U(s) - (s+a)3 S +3as’ +3as +a’

e Systemtransfer function, including delay:

Y(s) _ 0
Uls) ;6

1/20/2023

82



Building a Black-Box Model: Traditional Form

e Define

1/20/2023

0 = (wn and wg = wWny/1—¢2 (ie., w2 = 0% + w3), and let

A Kpoh, . g __—Kpw) .~ Kpep(p=2Cwn),
PQ—QCWnP-H«J% ’

p2—20wnptw?’ p2—2lwnptw? !

= (B cos (wq (t —T)) + C;—ZB sin (wq (t — T))) Then each

fitted time-delayed CAT unit impulse response is given by
{o if <« Th

y(t) = (Ae—p(t—T) n De—o(t—’ﬂ) W(t—T) ift>T,

for some p, ¢, w, and 7T, computed from a2, a1, ao and T
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Black-Box Model Dynamics Interpretation

X, (¢) =—a,x,(2) + x,(¢)
X, (8) = —a,x,(2) + x5 (7)
X3 (1) = —ayx, (1) + bv(?)

¥(0) =x,(?)

* First equation:

— llainhibits own
production

— [lla] grows
proportionately
with x,(t)

— Xx,(t) is either
[Xa] or [Xa-Va]

1/20/2023

-

Contact
Activation
(Intrinsic)
Pathway

\

N
<J

Villa <

—
Q‘
; @

Tissue
Factor
(Extrinsic)
Pathway

Mo

Tissue I i

—> Factor ' L

<l

g
@gend
@

Color

p
=
]

\

Active/inactive
protein factor

Measured protein
factor

Complex of two
protein factors

» o

Clot wff of Xi

Formation . y

Reaction
Reaction activation

Reaction inhibition

Relative effect on
lla concentration

84



Black-Box Model Dynamics Interpretation

X, (¢) =—a,x,(2) + x,(¢)
X, (8) = —a,x,(2) + x5 (7)
X3 (1) = —ayx, (1) + bv(?)

¥(0) =x,(?)

* Summary:
— x4(t)is [lla]
— Xx,(t) is [Xa-Va]
— X,(t) is [TF-VIIa]
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— Modelis keeping track of the chief participants of the thrombin generation process.
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Targeted Clinical Control of Trauma Patient Coagulation

Through a Thrombin Dynamics Model
Amor Menezes, Ryan Vilardi, Adam Arkin and Mitchell Cohen (UCB/LBNL UCSF/SFGH)

0.2 0.2
Benefit/Results ~ cheen -]
Parameters exactly capture behavior ~ F 01|~ g&in, - |—#1449211=101)  F0.1p - fou
caused by protein factor addition = ‘ N, ‘ﬁ]jﬁgﬁ :: _ 1;2 =
(e.g., factor Il to normal plasma) or e 0
0 10 _20 30 40 0 10 20 30 40
Time [min] Time [min]
oy . 04 ;Measured I
Initial protein factor SNl Have proved the likelihood of authority (at

concentrations can
exactly predict a
trauma patient CAT
(e.g., for a moderate
Injury Severity Score)

least in vitro) to achieve a standard desirable
CAT trajectory.
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Moasured 1. Largerstudytoimprove parametric
For this patient’s —paoe inference and bettervalidate predictions

Post—-Spike |
__Predicted i. Moredata

Post-Spike| ii. Data-modelreconciliation
| 2. Computer/model-aidedinvestigation of
controllability, control authority

0 10 20 30 - : -
Time [min] 3. Extensionsof model’sapplicablerange

plasma, after adding =
concentrations of 3,
factors I, VIII, X, we can &
still correctly predict

the moved CAT




Viscoelasticity of Whole Blood
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Viscoelasticity of Whole Blood

Factor
Concentrations
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TEG graph estimation using:
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Precision Medicine



Threat X: a Precision Medicine Approach

Demographic/lInjury

Imaging

Clinical Data/Physiology

Proteome
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